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Abstract 14 

Many populations face multiple Anthropogenic threats simultaneously, and as a result, we have 15 

observed loss of biodiversity worldwide. Moreover, population stressors act at different spatial 16 

scales, and the understanding of variation in outcomes for species will depend on their dispersal 17 

ability. In this study, we developed a spatially explicit metapopulation simulation to investigate 18 

how stressors that act at different spatial scales interact with landscape composition and dispersal 19 

behavior to drive patterns of metapopulation extirpations. We are particularly interested in 20 

gaining insight into the decline of not only range-limited species, but also widespread butterflies 21 

that have been reported in recent years, contrary to conventional wisdom about traits that make 22 

species more at risk of population decline. We found that stressors acting at different spatial 23 

scales interact with dispersal, especially in highly developed landscapes. On average, being less 24 

dispersive produces worse outcomes because more dispersive species benefit from semi-natural 25 

habitats, which can strengthen connections between source populations. At the same time, it is 26 

the degradation of these types of land in particular that may disproportionately impact dispersive 27 

species. These findings enhance our understanding of insect biodiversity loss and demonstrate 28 

that the conservation of widespread insects will likely require consideration of larger-scale 29 

landscape connectivity.   30 

  31 
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Introduction 32 

From an ecological perspective, the past century can only be characterized as a period of 33 

unprecedented change (Dirzo et al. 2014, Wagner et al. 2021, Edwards et al. 2025). Large-scale 34 

modification and destruction of natural lands have significantly reduced global habitat 35 

availability, and remain one of the primary drivers of the global biodiversity crisis (Raven and 36 

Wagner 2021, Caro et al. 2022, Halsch et al. 2025). Landscape-level stressors are often 37 

accompanied by, or are the cause of, additional local stressors, such as agrochemical pollutants 38 

or the introduction of non-native species, which can have further and synergistic negative 39 

impacts on population vital rates. As the universal threat of climate change continues to escalate, 40 

the potential for combinatory effects among Anthropogenic stressors is almost limitless 41 

(Parmesan and Yohe 2003, Staudt et al. 2013, Harvey et al. 2023). Populations facing multiple 42 

stressors in increasingly fragmented landscapes are likely to decline, but how stressors that act at 43 

different spatial and temporal scales interact to drive declines is uncertain and difficult to 44 

measure in the field, a problem that is exacerbated by the lack of a clear theoretical framework 45 

for understanding interacting stressors across scales (Brown et al. 2013).  46 

     Recent years have seen rapid growth in the attention paid to invertebrate population trends 47 

(Althaus et al. 2021, Wagner et al. 2021). Species like the monarch butterfly (Danaus plexippus) 48 

and Franklin’s bumblebee (Bombus franklini) have galvanized the public and become symbols of 49 

conservation and land stewardship (Thorp 2005, Preston et al. 2021). The monarch in particular 50 

demonstrates a relatively under-appreciated feature of insect declines: many declining species 51 

are widely distributed (Van Dyck et al. 2009, Wagner 2020). For example, the west coast lady 52 

(Vanessa annabella), which has a distribution that covers the entire western United States, is the 53 

butterfly in steepest decline across that region (Forister et al. 2021, 2023b). Traditionally, insect 54 
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conservation has focused on range-limited species, often characterized by low dispersal 55 

capabilities, with only a few populations remaining (Murphy and Weiss 1988, Wagner and Van 56 

Driesche 2010, Marschalek and Klein 2010). While protecting these remnant populations will 57 

continue to be of paramount importance for conservation, the decline of widespread species is 58 

also of great concern, particularly because the spatial scale at which conservation actions need to 59 

be taken is likely very different from that of geographically limited species. 60 

     Widespread insects differ from geographically limited species in important ways. They are 61 

more likely to be dietary or habitat generalists and can occupy a greater proportion of the 62 

landscape, including degraded or suboptimal areas (Bender et al. 1998, Devictor et al. 2008). 63 

Widespread species are also more influenced by the greater landscape context, and presence and 64 

abundance at any one site can depend on processes occurring at that site, as well as on ecological 65 

interactions or environmental conditions occurring far away. In some extreme cases, the number 66 

of migratory insects in one location can vary from year to year by orders of magnitude, 67 

depending on overwintering conditions thousands of miles away (Hu et al. 2021). Large-scale 68 

spatial dependency is also true for widespread non-migratory insects that spend all year in a 69 

landscape and have high dispersal ability (Pardikes et al. 2017). Thus, as habitats continue to be 70 

degraded or lost, widespread species may be especially affected, and we might expect that 71 

species with broader geographic distributions are just as likely to decline as those with more 72 

isolated distributions. 73 

     Insight into the effects of habitat loss and degradation on widespread species can be found in 74 

the meta-population literature (Vance 1984, Vogwill et al. 2009, Wang et al. 2015). Increased 75 

dispersal can stabilize population networks, reduce population variability, and facilitate 76 

population rescue through demographic input and recolonization of extirpated areas (Lande et al. 77 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2025. ; https://doi.org/10.1101/2025.09.17.676929doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676929
http://creativecommons.org/licenses/by-nc-nd/4.0/


1998, Johst et al. 2002). Yet, outcomes of high dispersal are not universally positive. Greater 78 

dispersal can lead to increased synchrony among populations, making the meta-population more 79 

susceptible to large-scale disturbance (Heino et al. 1997, Dey and Joshi 2006, Haynes and Walter 80 

2022). High emigration rates can also have adverse effects in areas with small populations or 81 

small habitat patches due to the direct loss of reproducing individuals (Hanski 1998). 82 

Approaches to studying these questions have often been theoretical, although one meta-analysis 83 

using butterfly data has shown a negative relationship between population growth and dispersal 84 

(Baguette and Schtickzelle 2006). The relationship between dispersal, landscape configuration, 85 

and population persistence is likely highly context-dependent and varies between landscapes, 86 

stressors, and the inherent biology of the study organisms (Johst et al. 2002). 87 

     In this study, we employ a spatially explicit metapopulation simulation to investigate the 88 

effects of multiple population stressors operating at different spatial scales, as well as variation in 89 

dispersal behavior, on metapopulation dynamics. Our goal is to understand how varying 90 

intensities of local and landscape-wide stressors interact to drive population equilibria in a 91 

landscape with different distributions of habitat quality. We are motivated in particular by the 92 

phenomenon of declining widespread butterflies from the California Central Valley (Shapiro, 93 

Arthur 2024), a highly converted landscape (Forister et al. 2010, Halsch et al. 2020). First, we 94 

ask how metapopulations respond to landscape effects when synthetic species have different 95 

dispersal capabilities. Next, we consider whether additional stressors, acting at local and regional 96 

scales, have a greater impact on metapopulation persistence and examine how stressors interact 97 

with dispersal distance. Finally, we ask how the composition of simulated landscape 98 

conservation interacts with simulated stressors to aid in the recovery of dispersive species. 99 

Methods 100 
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Overview 101 

The metapopulation simulation consisted of three stages run for 70 time steps (20-year burn-in 102 

followed by a 50-year observation period). First, a 100 x 100 cell landscape was randomly 103 

generated with varying proportions of natural, semi-natural, and developed habitats, as well as 104 

different levels of patchiness. Within each time step of the simulation, the population growth rate 105 

in each cell was influenced by environmental factors, including habitat quality, landscape-wide 106 

stress, local stress, and density dependence. Individuals then dispersed, with both immigration to 107 

and emigration from a patch coinciding. At the end of each simulation iteration, the average 108 

abundance and extinction dynamics were summarized. Parameters were varied for the magnitude 109 

of landscape-wide stress, local stress, and dispersal ability, and simulations were run for all 110 

combinations of these environmental stressors and dispersal parameters. Inference is not drawn 111 

from temporal trends within a single iteration of the simulation, but rather from comparing 112 

summary statistics among iterations with different parameters. All simulations were run using R 113 

version 4.5.1 (R Core Team 2023). 114 

Annual population growth rate 115 

The primary variable affected across different conditions of the simulation was the annual 116 

population growth rate (Sibly et al. 2002). In the initial time step, populations were given a size 117 

proportional to the habitat quality in each cell. Subsequently, the growth rate for a time step was 118 

the sum of the impact of landscape, weather, additional stressors (local and landscape-wide), and 119 

density dependence based on abundance in the previous year. These effects were summed to 120 

determine the population growth for that time step (positive effects had positive values and 121 

negative effects had negative values). This sum was then exponentiated and multiplied by the 122 
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previous year’s population size. Finally, this value was used as the rate parameter in a single 123 

draw from a Poisson distribution, whose value became the population size in the current step 124 

(before dispersal). The density dependence function was a right-skewed function, where middle 125 

values are assigned positive population growth, while high and very low values (Allee effects) 126 

are assigned negative population growth (Fig. S1). All other effects are described in detail in 127 

subsequent sections.  128 

Generating baseline habitat quality and patchiness 129 

Landscapes were created by first generating an empty 100 x 100 matrix. A determined number 130 

(based on an input parameter) of randomly selected cells were classified into one of three land 131 

types: natural, semi-natural, or developed. The more cells that were initially placed, the patchier 132 

the resulting landscape. The landscape was then grown from these initial patches, with 133 

neighboring cells assigned to the same class as their nearest neighbor until it reached other cells 134 

that had already been assigned to a land use type. The final cells that bordered two different land 135 

use types were assigned probabilistically based on the composition of the surrounding landscape. 136 

We also determined the initial proportion of cells assigned to each land use type as another 137 

parameter of interest. The resulting landscape after this process was a matrix composed of three 138 

land-use types, varying in patchiness and proportions based on the starting parameters.  This 139 

landscape generation process is random, and it can result in landscapes that do not reflect the 140 

desired land cover proportions. Because of this, we iteratively generated landscapes and included 141 

only those in the simulation where the final percent cover of land use types was within 1% of the 142 

target percent cover initially specified for each land use type. We varied both the patchiness and 143 

the percent cover of each land cover type as documented in Table 1. 144 
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     Next, each land use type was assigned a different baseline habitat quality. The quality of each 145 

natural habitat cell was drawn from a normal distribution with a mean of 0.5 and a standard 146 

deviation of 0.1. The quality of each semi-natural cell was drawn from a normal distribution with 147 

a mean of -0.25 and a standard deviation of 0.1. These values are later exponentiated as part of 148 

the process that determines annual population growth. Done this way, natural habitats were 149 

consistently a source, while semi-natural habitats, on average, were sinks, but could switch to 150 

sources if conditions were otherwise favorable. Cells classified as developed were assigned a 151 

value of -5, ensuring that even the best combinations of all other parameters could not render it 152 

viable. The most important aspect of the assigned habitat values was not the value itself, but 153 

rather how it compared to the other effects in the simulation. By choosing evenly divisible values 154 

and keeping all parameters in a comparable range, we examined how land cover compared with 155 

other additional stressors.  156 

     Finally, each landscape was given edge effects, where cells were adjusted based on the 157 

surrounding landscape composition. This was done by taking the mean habitat quality value of 158 

the 3x3 neighborhood around a cell, multiplying that value by 0.5 (to reduce its importance 159 

relative to the primary cell), and adding that value to the habitat quality value of the cell. This 160 

resulted in smoothed landscapes with varying patchiness, habitat composition, and additional 161 

local stressors. The simulation was run on ten randomly generated landscapes for most parameter 162 

combinations. However, more landscapes were used when the proportion of semi-natural habitat 163 

was higher, as a preliminary analysis indicated greater uncertainty in these landscapes (see the 164 

supplement for a complete description of the preliminary analysis, Fig. S2, S3). Examples of 165 

landscapes are in Figure 1 and an online tool described in the supplementary materials (Fig. 1). 166 

Simulating conservation scenarios 167 
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We created two additional functions that took the generated landscapes as input and performed 168 

two types of modifications. Both functions converted land from one classification to another, but 169 

varied in the locations where land was changed. For this simulation, we changed land types from 170 

developed to natural to mimic land acquisition and restoration. The first function converted 171 

developed land into natural land along the edges of existing natural land, essentially expanding 172 

the edges, and thus made the core habitat larger. This is done by identifying which cells in a 173 

developed patch share an edge with a natural patch and then converting a number of these cells 174 

based on an input parameter. The other function identified cells in developed patches that were 175 

furthest from the edges and then converted a number of these cells based on an input parameter. 176 

This scenario was meant to represent the habitat restoration approach of creating stepping stones 177 

between natural lands (Saura et al. 2014). Examples of landscape modifications are found in the 178 

supplement and the online tool described in the supplementary materials (Fig. S4). The complete 179 

set of parameters tested is presented in Table 1. 180 

Generating additional local and landscape-wide stress 181 

The primary motivation of this simulation is not to explore the role of landscape alone, but also 182 

to ask how simulated populations respond to additional stressors when in different landscape 183 

types. Additional stressors were classified based on their area of impact, either locally or across 184 

the entire landscape. We only added local stressors to semi-natural landscapes, and they acted at 185 

the level of the initial patch assignment, where the same negative value was applied to a patch of 186 

semi-natural cells. This design resulted in variation in the intensity of local-level stressors across 187 

semi-natural cells in one landscape. The magnitude of additional local stress for each patch was 188 

randomly drawn from a gamma distribution (multiplied by -1), where values cannot be positive. 189 
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The rate and shape parameters for the gamma distribution were calculated using moment 190 

matching, where the mean of the distribution is a parameter that is varied (Table 1).  191 

     Additional landscape-wide stress impacted all cells equally, regardless of land use type, and 192 

was intended to represent large-scale “good” and “bad” weather years (such as those generated 193 

by ENSO cycles). This parameter was set up as an oscillating sine wave, with a wavelength of 194 

six years and an amplitude of 0.5. This effect is of the same magnitude as natural land, and thus, 195 

in this simulation, the value of a good weather year is equivalent to that of high-quality habitat. 196 

When this parameter was set to the control (of no additional landscape-wide stress), this function 197 

oscillated between 0.5 and -0.5 every 6 years. When this condition was set to higher values, a 198 

negative trend of varying magnitudes was imposed on this sine function, which caused the 199 

oscillating function to worsen over time (following a 20-year burn-in period). A comprehensive 200 

description of the local and landscape-wide conditions affecting populations can be found in 201 

Table 1.  202 

Dispersal 203 

After the effects of the environment on population growth were applied to every cell in a time 204 

step, the dispersal stage was initiated. For each cell, the percentage of the population emigrating 205 

was informed by dispersal parameters (which contribute to a dispersal function). The key 206 

parameters in this function were the abundance of the current cell, the habitat quality of the 207 

current cell, and two bounding parameters that describe the asymptotes of this function. Lower 208 

habitat quality in the current cell or a higher abundance promoted dispersal to other cells (with 209 

total dispersal bounded by the asymptotes). Once the percentage of individuals emigrating from a 210 

cell is determined, where they go is related to a dispersal distance parameter. When this 211 
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parameter was set to 1, they could only move within the 3x3 matrix with the current cell as its 212 

center, whereas a parameter of 10 allowed them to access cells in a 21x21 area. Closer cells were 213 

more likely to be moved to, with the probability being inversely related to distance.  214 

     Specifically, we determined the probability that each cell will gain individuals from each of 215 

the other cells in the dispersal area (8 potential cells at the lowest setting, 441 at the highest). 216 

This was coded as a three-dimensional array, where x and y are the cells in the dispersal 217 

neighborhood, and this is repeated z times for all cells in the landscape. For instance, at the 218 

lowest setting, x and y are a 9-cell array (with the reference cell in the middle). To determine the 219 

number of individuals that the reference cell would gain, we multiplied the emigrating 220 

population of each of the eight cells by the inverse distance to the reference cell and added these 221 

values together. This final sum became the rate parameter for a single draw from a Poisson 222 

distribution. This calculation is performed simultaneously across all 9-cell arrays in the z-223 

dimension. Once the number of individuals each cell gains was determined, the number of 224 

individuals a cell loses was calculated and made into a loss matrix. These matrices were then 225 

added simultaneously to the population size matrix created after applying environmental effects. 226 

The population size after dispersal became the end population size for that year. The functions 227 

for dispersal are presented in the supplement (Fig. S5). The complete set of parameters tested can 228 

be found in Table 1. 229 

Output variables 230 

The simulation was run a total of 58,500 times, representing the number of parameter 231 

combinations and replications. For each run, we saved the number of times a cell reached zero 232 

individuals at any point during the 50-year observation period (extirpated), the number of times 233 
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an extirpated cell later reached an abundance above the Allee effect threshold (recolonized), and 234 

the average abundance in semi-natural cells. We used the extirpation and recolonization metrics 235 

to calculate the probability that cells are extirpated and the probability that they are successfully 236 

recolonized. We did not count recolonization events in which populations never reached the 237 

Allee threshold below which we imposed a negative population growth rate in the simulation 238 

(Fig. S1). Our primary metric for inference was calculated using the following equation, which 239 

describes the number of cells that are expected to be extirpated (after accounting for 240 

recolonization) over 50 years of observing the simulation’s behavior. 241 

1 �
�1 � �����	
���� 	���. � �  # �� ����� � ��������� 	���.  �  ������ �� �����	
������

# �� �����
 

Results 242 

The number of extirpated cells in a landscape decreased when simulations included more natural 243 

habitat and increased with greater development. When the landscape was mainly composed of 244 

one of these two habitat types, the number of extirpations essentially matched the number of 245 

cells that are either developed or natural (inverse relationship) (Fig. 2A,C). The relationship 246 

between extirpations and semi-natural habitat was more complex (Fig. 2B). As the proportion of 247 

semi-natural habitat increased between different iterations, the number of populations quickly 248 

grew (extirpations decreased) until about one-third of the landscape was semi-natural, after 249 

which the effect plateaued and even showed a tendency to reverse with increasing extirpations at 250 

higher levels of semi-natural habitat. These effects interacted with dispersal ability. 251 

Metapopulations in simulations with more dispersive behavior were more resilient to increased 252 

development, occupying about 20% more of the landscape until roughly one-third of it was 253 

developed, at which point population density declined rapidly (Fig. 2 A,C). Afterward, the 254 
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number of populations mostly tracked the amount of usable habitat (natural and semi-natural). 255 

This contrasted with simulations of less dispersive dynamics, which closely followed the 256 

available habitat (Fig. 2B). Simulations with more semi-natural habitats benefited all species, but 257 

the benefit was much greater for dispersive species. For example, when the landscape was 25% 258 

semi-natural, approximately 40% of the landscape was extirpated for non-dispersive species, but 259 

only about 10% for highly dispersive ones. We also found that species performed between 15 260 

and 25% better in patchier landscapes, and that dispersive species fared better in particular (Fig. 261 

3). 262 

     The number of extirpations in a landscape also increased when comparing simulations with 263 

increasing intensities of additional stressors, which have either a local or landscape-wide effect 264 

in addition to the impact of the landscape itself (Fig. 4). The relationship between both types of 265 

additional stress and extirpations varied with dispersal. When there was no population stress 266 

(other than the landscape itself), the more dispersive species occupied about 20% more of the 267 

landscape. As local stress increased, both dispersive and non-dispersive species declined, but the 268 

rate of extirpation was higher for non-dispersive species. The change from moderate to high 269 

local stress resulted in a 34% increase in extirpations for non-dispersive species, but only a 21% 270 

change for very dispersive species (Fig. 4A). The opposite is true in response to regional stress 271 

(that impacted all cells), where the rate of extirpation is higher for more dispersive species (Fig. 272 

4B). Specifically, shifts from moderate to high regional stress results in a decline of 10% for 273 

non-dispersive species, but a decline of 15% for very dispersive species. 274 

     The number of extirpations over the entire simulation also revealed interactive effects 275 

between the landscape, combined local and landscape-wide stress, and dispersal capability, 276 

shown by the curved contours in Figure 5. When 50% or more of the landscape was comprised 277 
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of natural habitat, most species, regardless of dispersal ability, were robust to additional stressors 278 

(Fig. 5 A-C).  The more natural habitat, the better, but all species, even those with little dispersal 279 

ability, occupied a large portion of the landscape. When 50% or more of the landscape consisted 280 

of semi-natural habitat, more interactions emerged, mainly when the landscape comprised 281 

between 50% and 67% semi-natural habitat (Fig. 5 D,E). In these landscapes, a greater ability to 282 

disperse resulted in more resilience to moderate amounts of additional landscape stressors. In 283 

both instances, simulations with non-dispersive species occupy 20% less of the landscape. As 284 

combined stress continued to grow, the dispersive species advantage decreased, and the number 285 

of extirpations was more related to the amount of combined stress, and not dispersal (Fig. 5D-F). 286 

Landscapes that were primarily developed resulted in the most extreme interactive effects (Fig. 5 287 

G-I). For instance, when the landscape is 67% developed, a non-dispersive species (on the left 288 

side of Fig. 5H) declines by 30% when moving from no additional stress to the most extreme 289 

case. However, a dispersive species (on the right side of Fig. 5H) declines by 65% when moving 290 

from the no additional condition scenario to the extreme additional stress condition. In the most 291 

extreme simulation, where 90% of the landscape is developed, there is almost no difference 292 

between dispersive and non-dispersive species, under high amounts of additional stress (Fig. 5I). 293 

    Interactions between dispersiveness and habitat were not only apparent under simulated stress, 294 

but also under simulated conservation. Both simulated conservation scenarios (connectivity 295 

versus core habitat) resulted in fewer extirpations; however, increasing connectivity had a non-296 

linear positive effect on dispersive species in non-patchy landscapes. For a mostly non-dispersive 297 

species in a non-patchy landscape, the difference between no additional conservation and 30% 298 

habitat restoration was an improvement in occupancy of 20%; however, this increase was closer 299 

to 40% for highly dispersive species (Fig. 6A). Increasing core habitat was also beneficial; 300 
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however, the relationship was essentially linear with the amount of new habitat added, regardless 301 

of dispersal ability (Fig. 6C). When the simulated landscape was patchier the differences 302 

between connectivity and core habitat were not as strong. Both increased approximately linearly 303 

with the amount of new habitat being added, with little interaction between dispersiveness (Fig. 304 

6B,D). 305 

     In addition to landscape extirpations, we also tracked the average abundance of individuals in 306 

semi-natural areas. Overall, this metric interacted with dispersal ability less than extirpations did, 307 

and because of this, figures are primarily presented in the supplement (Fig. S6, 7). We found no 308 

difference in abundance between dispersal abilities in response to landscape patchiness (Fig. S6). 309 

We also found no differences in average abundance between dispersal groups in response to 310 

landscape-wide stress (Fig. S7A). We found a slight effect of local stressors, where additional 311 

local stress in semi-natural landscapes was more detrimental to non-dispersive species (Fig. 312 

S7B). The variable with the most substantial impact was landscape cover, where increases in 313 

natural and semi-natural areas disproportionately benefited and increases in development land 314 

disproportionately hurt more dispersive species (Fig. 7). This effect was such that, unlike 315 

patterns of extirpations, conditions were observed that are clearly worse for dispersive species 316 

than non-dispersive ones.  317 

Discussion 318 

Many populations of wild plants and animals are facing concurrent Anthropogenic threats acting 319 

at different spatial scales (Brown et al. 2013, Halsch et al. 2025), and we can expect that 320 

metapopulation outcomes will depend on the magnitude of stressors and species-specific 321 

variation in dispersal ability. Understanding these dependencies may, in part, explain the 322 
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observed declines of widespread insect species, which are exposed to more landscape stressors 323 

than range-restricted species (Van Dyck et al. 2009, Edwards et al. 2025). Here, we developed a 324 

spatially explicit metapopulation simulation to simultaneously explore how multiple axes of 325 

stress, from landscape composition to local and landscape-wide stressors, and dispersal behavior, 326 

impact metapopulation persistence. We found that responses to different categories of stressors 327 

were expectedly negative, but that they interacted with dispersal and that expectations for 328 

population trajectories may indeed vary with dispersal. These findings have implications for 329 

understanding patterns of insect declines, as well as for insect conservation, since strategies to 330 

help widespread insects will likely need to consider a larger scale than those for range-limited 331 

species.   332 

     The primary objective of this study was to gain insight into the nature of the decline of 333 

widespread insect species, which include the monarch butterfly and other species in North 334 

America that have been reported to have declining populations despite, in many cases, 335 

geographic ranges that span multiple broad geographic regions (Forister et al. 2023b, Edwards et 336 

al. 2025). We hypothesized that widespread species sample more of the landscape, and because 337 

of this, in a heavily modified landscape, they are exposed to more cumulative stress than non-338 

dispersive species. This was not the case for most of the combinations of conditions that we 339 

explored. In nearly all combinations of land use compositions and additional stressors, we found 340 

that non-dispersive species performed worse, or in extreme cases, about the same as dispersive 341 

ones. This does not mean that dispersive species are not at risk, as long-term data indicate that 342 

many are in decline (Van Dyck et al. 2009, Forister et al. 2021); instead, it invites consideration 343 

of the areas in our simulated world that most closely reflect the patterns of decline of both non-344 

dispersive and dispersive species. The conditions where this was seen were in landscapes that 345 
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were highly developed, where most of the landscape provides no resources for synthetic 346 

populations. It is in these landscapes where dispersive species are reduced to similar occupancy 347 

as non-dispersive ones. This is likely due to the reduction of connectivity. Connections between 348 

source populations reduce distances to other high-quality patches and can stabilize the network 349 

through the effects of long-range dispersal (Howe et al. 1991, Johst et al. 2002, Bowler and 350 

Benton 2009). In primarily developed landscapes, the semi-natural spaces become fewer and 351 

more critical, and as additional pressures increase in these spaces, this is especially detrimental to 352 

dispersive species. 353 

     This result may provide some insight into the contemporary loss of butterflies in highly 354 

converted landscapes (Van Dyck et al. 2009, Forister et al. 2010). We consider the case of 355 

butterflies in the Central Valley of California as an example of such a landscape; however, the 356 

results apply to other, similarly modified landscapes. The Central Valley is a highly converted 357 

landscape, where the legacy of centuries of land use change is now being met with additional 358 

factors like invasive species, disease, pesticides, and climate change (Forister et al. 2010, 359 

MacLean et al. 2018, Halsch et al. 2020). This is precisely the type of landscape where, based on 360 

our results, we should expect to see rates of decline that are comparable regardless of dispersal 361 

range. It may be the case that the historical loss of habitat over centuries had greater impacts on 362 

non-dispersive species (as predicted by the simulation), and that contemporary dispersive insects 363 

are only in significant decline now in response to additional stressors like climate change, 364 

introduced species (and pathogens), and pesticide exposure. In other words, the decline of many 365 

range-restricted species may have occurred before their geographic distributions and habitat 366 

preferences were completely understood (Fattorini 2011, Habel et al. 2016, Forister et al. 2023a).  367 
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     While the extreme landscapes yield extreme results for dispersive species, it remains true that 368 

this simulation demonstrates that being dispersive is mostly beneficial, even if it means being 369 

exposed to the additional threats of a semi-natural landscape. One likely contributing factor to 370 

this finding is the landscape generation process itself. The initial patches from which each 371 

landscape was built were placed randomly, which, on average, results in well-connected and 372 

stable landscapes (Grilli et al. 2015). For instance, even if a landscape is 2/3 developed, the 373 

remaining 1/3 will be more evenly distributed across the matrix, resulting in a landscape that 374 

may benefit dispersive species (Howe et al. 1991). The distribution of natural land in human-375 

modified landscapes is not random, and it is possible that specific landscapes can be constructed 376 

to hurt dispersive species even more than non-dispersive ones. Such a study would be an 377 

excellent follow-up to these results, especially if it were designed based on the landscape 378 

compositions of real focal landscapes. Still, this simulation demonstrates that under many 379 

conditions, a general expectation is that dispersive species are more stable as a metapopulation 380 

network than non-dispersive species. 381 

     Another explanation for our results differing from our expectations may result from the 382 

primary metric of inference: the percent of the landscape extirpated. This metric summarized the 383 

entire landscape and, based on extirpation and recolonization rates, calculated the expected 384 

number of cells expected to be occupied at equilibrium. This metric is thus all-knowing and 385 

incorporates information from the entire landscape to assess extinction. This is not the same type 386 

of information that is provided by long-term monitoring programs, which would be more 387 

reflected by the abundance of a single cell in the simulation. Furthermore, many large-scale 388 

monitoring programs are biased in their location, as they often oversample areas near 389 

development (Dunn et al. 2005, Geldmann et al. 2016). For this reason, we also tracked the 390 
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average abundance of species in semi-natural cells. We found that there are indeed cases where 391 

dispersive species decline at the same rate or at greater rates than non-dispersive species. The 392 

factor that generated the most significant declines of dispersive species (relative to non-393 

dispersive ones) was the development of land. This is likely a further demonstration of the 394 

previously noted importance of connectivity for dispersive species (Johst et al. 2002) and that the 395 

transition to a landscape entirely unusable has detrimental effects on dispersive species.   396 

     This result also demonstrates that while monitoring data may detect greater reductions in the 397 

abundance of widespread species, this does not necessarily reflect a greater risk to the entire 398 

metapopulation. This suggests that even in cases where dispersive species experience greater 399 

losses of individuals across the whole meta-population, they are still at less total risk of complete 400 

extirpation. While this may be the base expectation, this finding should be taken with caution. 401 

Firstly, many charismatic widespread insects, such as the monarch butterfly (Danaus plexippus), 402 

are not only highly dispersive but also migratory (Reppert and Roode 2018), and these dynamics 403 

are not captured in this simulation. For instance, we did not examine situations where conditions 404 

in a subset of the landscape, such as overwintering grounds, exhibit a disproportionate influence 405 

on the entire population. In such cases, a model would need to be built to capture this dynamic 406 

explicitly, and it may be the case that the impacts on population growth during this one critical 407 

phase of their migration are as crucial as the rest of the landscape collectively (Taylor and Hall 408 

2011). Secondly, while under many conditions, non-dispersive species may be at a higher risk of 409 

metapopulation extirpation, there are conditions where dispersiveness ceases to matter, which 410 

occurs in landscapes that are heavily modified and under additional stressors. Given the 411 

landscape composition of many lowland areas and the global threat of climate change, it is not 412 
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unreasonable to expect that many species in such places are being pushed to their limits and that 413 

declines of range-restricted and widespread species should be expected. 414 

     While this simulation is informative for understanding observed patterns of insect decline, it 415 

can also inform the efficacy of potential interventions. Semi-natural landscapes appear to offer 416 

considerable value for bolstering metapopulations, especially for more dispersive species (Howe 417 

et al. 1991). While the expansion of high-quality source habitats is beneficial for all species, 418 

increasing the coverage of semi-natural habitats can have comparable effects for dispersive 419 

species (to a certain extent). In the context of insects, such areas may include pollinator strips 420 

and hedgerows in agricultural areas, as well as pollinator gardens in cities, which can provide 421 

resources in otherwise substandard areas (Buhk et al. 2018, von Königslöw et al. 2022, 422 

Donkersley et al. 2023). This finding is also supported by experimental work, which has shown 423 

that open corridors that do not support populations themselves are still capable of facilitating 424 

movement between high-quality patches (Haddad and Tewksbury 2005). Our additional habitat 425 

restoration iterations also found that building connections between existing high-quality patches 426 

can have a disproportionately positive effect on dispersive species. The effect was especially 427 

strong in landscapes that are not otherwise patchy, with few existing connections between source 428 

populations. Such “stepping stone” habitats are important for long dispersal events, although 429 

such habitats need to be of adequate size or quality to be useful (Saura et al. 2014). Together, 430 

these results underscore the importance of strategically expanding and connecting semi-natural 431 

and high-quality habitats, which can amplify the persistence of dispersive species. 432 

     One of the defining features of the Anthropocene is the interconnectedness of threats imposed 433 

on natural populations (Breitburg et al. 1998, Pirotta et al. 2022, Halsch et al. 2025). Many 434 

landscapes face multiple at once, which is likely crucial for understanding the decline of both 435 
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local and widespread insects (Yang et al. 2021, Pirotta et al. 2022). Our findings provide a 436 

metapopulation perspective on this process and offer further insights into the decline of 437 

widespread species. All else being equal, being highly dispersive creates larger and more stable 438 

metapopulations. Still, in highly developed landscapes with a legacy of habitat loss, additional 439 

stressors like climate change can lead to rapid declines. These results highlight the importance of 440 

marginal habitats and how establishing connections can support mobile species (Samways 2007). 441 

Many range-limited species may have already been lost before baseline data could be established 442 

through monitoring programs. However, many widespread species, while declining, can be 443 

supported through thoughtful land conservation and management. 444 
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Tables 624 
 625 
Table 1. Description of all varied parameters in the simulation. Multiple iterations were run for 
all parameter combinations. The number of iterations for each parameter combination was 
determined from a power analysis (described in the supplement). 
 

Parameter  Values Description 

Landscape 
composition 

5%, 16%, 25%, 33%, 
50%, 66%, 90% 

cover 

The percent cover of the landscape of each habitat 
type. 

Landscape 
patchiness 

10, 200, 400 patches 
The number of initial patches in landscape creation 

(shown in Fig. 1). 

Local effect 
-1, -0.75, -0.5, -0.25, 

0 
The additional local effects associated with patches in 

semi-natural habitats. 

Regional effect 0, 0.25, 0.5, 0.75, 1 
The magnitude of the worsening of regional weather 

effects. 
Dispersal 
distance 

1, 3, 5, 8, 10 cells 
The number of cells away that individuals may move 

to during one time step. 

Landscape 
restoration 

10%, 20%, 30% 
modified 

The percent of the landscape that is changed from 
developed to natural. These values were used for both 

types restoration simulations. 
  626 
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Figures 627 

            628 

Figure 1. Four example simulated landscapes with different parameterizations. A) A landscape 629 
with an even proportion of habitat types with low patchiness. B) A landscape with an even 630 
proportion of habitat types with high patchiness. C) A landscape with a higher proportion of 631 
developed habitat with low patchiness. D) A landscape with a higher proportion of developed 632 
habitat with high patchiness.  633 
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 634 

Figure 2. The effects of habitat quality and dispersal ability on the average number of 635 
extirpations across the simulations. Panel A shows the impact of increasing natural habitat, Panel 636 
B shows increasing semi-natural habitat, and Panel C shows increasing developed habitat. The 637 
effects shown are the mean effects after averaging over all other effects. Points and lines 638 
represent the mean effect and are colored by dispersal ability. The bands surrounding the lines 639 
indicate bootstrapped 95% confidence intervals. 640 
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 641 

Figure 3. The effects of patchiness and dispersal ability on the average number of extirpations 642 
across the simulations. The effects shown are the mean effects after averaging over all other 643 
effects. Points and lines represent the mean effect and are colored by dispersal ability. The bands 644 
surrounding the lines indicate bootstrapped 95% confidence intervals based on bootstrapping. 645 
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 648 

Figure 4. The effects of landscape stressors and dispersal ability on the average number of 649 
extirpations across the simulations. Panel A shows the effects of local stressors associated with 650 
semi-natural habitat, and Panel B shows stressors that impact the entire landscape. The effects 651 
shown are the mean effects after averaging over all other effects. Points and lines represent the 652 
mean effect and are colored by dispersal ability. The bands surrounding the lines indicate 653 
bootstrapped 95% confidence intervals. 654 

 655 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2025. ; https://doi.org/10.1101/2025.09.17.676929doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676929
http://creativecommons.org/licenses/by-nc-nd/4.0/


 656 

Figure 5. The interactive effects of habitat quality, landscape stress, and dispersal ability on the 657 
average number of extirpations across the simulations. Within each panel, the x-axis represents 658 
increasing dispersal ability, and the y-axis represents increasing stressors (local and regional 659 
combined). Comparison across panels shows the effects of habitat quality. Panels in the left 660 
column show when the landscape is primarily natural, panels in the middle show when the 661 
landscape is predominantly semi-natural, and panels on the right show when the landscape is 662 
primarily developed. As panels move down, the proportion of that cover type increases. Contours663 
and colors represent the average number of extirpations across the simulations, after averaging 664 
over the effects not shown. Each contour line represents a change in 5% extirpation. 665 
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 666 

Figure 6. The effects of landscape restoration and dispersal ability on the average number of 667 
extirpations across the simulations. Panel A shows the effects of enhancing connectivity between 668 
existing patches in a non-patchy landscape. Panel B shows the impact of enhancing connectivity 669 
between existing patches in a patchy landscape. Panel C shows the effects of increasing existing 670 
natural habitat in a non-patchy landscape. Panel D shows the effects of increasing existing 671 
natural habitat in a patchy landscape. The bands surrounding the lines indicate bootstrapped 95% 672 
confidence intervals. 673 

en 

% 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2025. ; https://doi.org/10.1101/2025.09.17.676929doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.17.676929
http://creativecommons.org/licenses/by-nc-nd/4.0/


 674 

Figure 7. The effects of habitat quality and dispersal ability on the average abundance in semi-675 
natural cells across the simulations. Panel A shows the impact of increasing natural habitat, Panel676 
B shows increasing semi-natural habitat, and Panel C shows increasing developed habitat. The 677 
effects shown are the mean effects after averaging over all other effects. Points and lines 678 
represent the mean effect and are colored by dispersal ability. The bands surrounding the lines 679 
indicate bootstrapped 95% confidence intervals. 680 
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